Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Microbiol Infect ; 28(10): 1391.e1-1391.e5, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35654316

RESUMO

OBJECTIVES: To evaluate if the detection of N antigen of SARS-CoV-2 in plasma by a rapid lateral flow test predicts 90-day mortality in COVID-19 patients hospitalized at the wards. METHODS: The presence of N-antigenemia was evaluated in the first 36 hours after hospitalization in 600 unvaccinated COVID-19 patients, by using the Panbio COVID-19 Ag Rapid Test Device from Abbott (Abbott Laboratories Inc., Chicago, IL, USA). The impact of N-antigenemia on 90-day mortality was assessed by multivariable Cox regression analysis. RESULTS: Prevalence of N-antigenemia at hospitalization was higher in nonsurvivors (69% (82/118) vs. 52% (250/482); p < 0.001). The patients with N-antigenemia showed more frequently RNAemia (45.7% (148/324) vs. 19.8% (51/257); p < 0.001), absence of anti-SARS-CoV-2 N antibodies (80.7% (264/327) vs. 26.6% (69/259); p < 0.001) and absence of S1 antibodies (73.4% (240/327) vs. 23.6% (61/259); p < 0.001). The patients with antigenemia showed more frequently acute respiratory distress syndrome (30.1% (100/332) vs. 18.7% (50/268); p = 0.001) and nosocomial infections (13.6% (45/331) vs. 7.9% (21/267); p = 0.026). N-antigenemia was a risk factor for increased 90-day mortality in the multivariable analysis (HR, 1.99 (95% CI,1.09-3.61), whereas the presence of anti-SARS-CoV-2 N-antibodies represented a protective factor (HR, 0.47 (95% CI, 0.26-0.85). DISCUSSION: The presence of N-antigenemia or the absence of anti-SARS-CoV-2 N-antibodies after hospitalization is associated to increased 90-day mortality in unvaccinated COVID-19 patients. Detection of N-antigenemia by using lateral flow tests is a quick, widely available tool that could contribute to early identify those COVID-19 patients at risk of deterioration.


Assuntos
COVID-19 , Anticorpos Antivirais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2
3.
Emerg Microbes Infect ; 11(1): 1537-1549, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35603455

RESUMO

There is a limited understanding of the pathophysiology of postacute pulmonary sequelae in severe COVID-19. The aim of current study was to define the circulating microRNA (miRNA) profiles associated with pulmonary function and radiologic features in survivors of SARS-CoV-2-induced ARDS. The study included patients who developed ARDS secondary to SARS-CoV-2 infection (n = 167) and a group of infected patients who did not develop ARDS (n = 33). Patients were evaluated 3 months after hospital discharge. The follow-up included a complete pulmonary evaluation and chest computed tomography. Plasma miRNA profiling was performed using RT-qPCR. Random forest was used to construct miRNA signatures associated with lung diffusing capacity for carbon monoxide (DLCO) and total severity score (TSS). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were conducted. DLCO < 80% predicted was observed in 81.8% of the patients. TSS showed a median [P25;P75] of 5 [2;8]. The miRNA model associated with DLCO comprised miR-17-5p, miR-27a-3p, miR-126-3p, miR-146a-5p and miR-495-3p. Concerning radiologic features, a miRNA signature composed by miR-9-5p, miR-21-5p, miR-24-3p and miR-221-3p correlated with TSS values. These associations were not observed in the non-ARDS group. KEGG pathway and GO enrichment analyses provided evidence of molecular mechanisms related not only to profibrotic or anti-inflammatory states but also to cell death, immune response, hypoxia, vascularization, coagulation and viral infection. In conclusion, diffusing capacity and radiological features in survivors from SARS-CoV-2-induced ARDS are associated with specific miRNA profiles. These findings provide novel insights into the possible molecular pathways underlying the pathogenesis of pulmonary sequelae.Trial registration: ClinicalTrials.gov identifier: NCT04457505..Trial registration: ISRCTN.org identifier: ISRCTN16865246..


Assuntos
COVID-19 , MicroRNA Circulante , Síndrome do Desconforto Respiratório , COVID-19/complicações , MicroRNA Circulante/genética , Humanos , Pulmão , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Sobreviventes
4.
Front Med (Lausanne) ; 8: 756517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186962

RESUMO

BACKGROUND: The pathophysiology of COVID-19-related critical illness is not completely understood. Here, we analyzed the microRNA (miRNA) profile of bronchial aspirate (BAS) samples from COVID-19 and non-COVID-19 patients admitted to the ICU to identify prognostic biomarkers of fatal outcomes and to define molecular pathways involved in the disease and adverse events. METHODS: Two patient populations were included (n = 89): (i) a study population composed of critically ill COVID-19 and non-COVID-19 patients; (ii) a prospective study cohort composed of COVID-19 survivors and non-survivors among patients assisted by invasive mechanical ventilation (IMV). BAS samples were obtained by bronchoaspiration during the ICU stay. The miRNA profile was analyzed using RT-qPCR. Detailed biomarker and bioinformatics analyses were performed. RESULTS: The deregulation in five miRNA ratios (miR-122-5p/miR-199a-5p, miR-125a-5p/miR-133a-3p, miR-155-5p/miR-486-5p, miR-214-3p/miR-222-3p, and miR-221-3p/miR-27a-3p) was observed when COVID-19 and non-COVID-19 patients were compared. In addition, five miRNA ratios segregated between ICU survivors and nonsurvivors (miR-1-3p/miR-124-3p, miR-125b-5p/miR-34a-5p, miR-126-3p/miR-16-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). Through multivariable analysis, we constructed a miRNA ratio-based prediction model for ICU mortality that optimized the best combination of miRNA ratios (miR-125b-5p/miR-34a-5p, miR-199a-5p/miR-9-5p, and miR-221-3p/miR-491-5p). The model (AUC 0.85) and the miR-199a-5p/miR-9-5p ratio (AUC 0.80) showed an optimal discrimination value and outperformed the best clinical predictor for ICU mortality (days from first symptoms to IMV initiation, AUC 0.73). The survival analysis confirmed the usefulness of the miRNA ratio model and the individual ratio to identify patients at high risk of fatal outcomes following IMV initiation. Functional enrichment analyses identified pathological mechanisms implicated in fibrosis, coagulation, viral infections, immune responses and inflammation. CONCLUSIONS: COVID-19 induces a specific miRNA signature in BAS from critically ill patients. In addition, specific miRNA ratios in BAS samples hold individual and collective potential to improve risk-based patient stratification following IMV initiation in COVID-19-related critical illness. The biological role of the host miRNA profiles may allow a better understanding of the different pathological axes of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...